Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.03.08.583965

RESUMEN

The lung-resident immune mechanisms driving resolution of SARS-CoV-2 infection in humans remain elusive. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication. Acute replication results in the emergence of cell subsets enriched in viral RNA, including extravascular inflammatory monocytes (iMO) and macrophage-like T-cells, which dissipate upon infection resolution. iMO display robust antiviral responses, are transcriptomically unique among myeloid lineages, and their emergence associates with the recruitment of circulating CD4+ monocytes. Consistently, mice depleted for human CD4+ cells but not CD3+ T-cells failed to robustly clear infectious viruses and displayed signatures of chronic infection. Our findings uncover the transient differentiation of extravascular iMO from CD4+ monocytes as a major hallmark of SARS-CoV-2 infection resolution and open avenues for unravelling viral and host adaptations defining persistently active SARS-CoV-2 infection.


Asunto(s)
Virosis , Enfermedad Crónica , COVID-19
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.08.19.457020

RESUMEN

Coronavirus disease-2019 (COVID-19) provokes a hypercoagulable state with increased incidence of thromboembolism and mortality. Platelets are major effectors of thrombosis and hemostasis. Suitable animal models are needed to better understand COVID-19-associated coagulopathy (CAC) and underlying platelet phenotypes. Here, we assessed K18-hACE2 mice undergoing a standardized SARS-CoV-2 infection protocol to study dynamic platelet responses via mass spectrometry-based proteomics. In total, we found significant changes in >1,200 proteins. Strikingly, protein alterations occurred rapidly by 2 days post-infection (dpi) and preceded outward clinical signs of severe disease. Pathway enrichment analysis of 2dpi platelet proteomes revealed that SARS-CoV-2 infection upregulated complement-coagulation networks (F2, F12, CFH, CD55/CD59), platelet activation-adhesion-degranulation proteins (PF4, SELP, PECAM1, HRG, PLG, vWF), and chemokines (CCL8, CXCL5, CXCL12). When mice started to lose weight at 4dpi, pattern recognition receptor signaling (RIG-I/MDA5, CASP8, MAPK3), and interferon pathways (IFIT1/IFIT3, STAT1) were predominant. Interestingly, SARS-CoV-2 spike protein in the lungs was observed by immunohistochemistry, but in platelets was undetected by proteomics. Similar to patients, K18-hACE2 mice during SARS-CoV-2 infection developed progressive lymphohistiocytic interstitial pneumonia with platelet aggregates in the lungs and kidneys. In conclusion, this model recapitulates activation of coagulation, complement, and interferon responses in circulating platelets, providing valuable insight into platelet pathology during COVID-19. Key PointsO_LISARS-CoV-2-infected humanized ACE2 mice recapitulate platelet reprogramming towards activation-degranulation-aggregation. C_LIO_LIComplement/coagulation pathways are dominant in platelets at 2 days post-infection (dpi), while interferon signaling is dominant at 4dpi. C_LI


Asunto(s)
Tromboembolia , Enfermedades Pulmonares Intersticiales , Trastornos de la Coagulación Sanguínea , Síndrome Respiratorio Agudo Grave , Hipercinesia , Trombosis , Trastornos de la Coagulación Sanguínea Heredados , COVID-19
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.07.17.452554

RESUMEN

The majority of SARS-CoV-2 infections among healthy individuals result in asymptomatic to mild disease. However, the immunological mechanisms defining effective lung tissue protection from SARS-CoV-2 infection remain elusive. Unlike mice solely engrafted with human fetal lung xenograft (fLX), mice co-engrafted with fLX and a myeloid-enhanced human immune system (HNFL mice) are protected against SARS-CoV-2 infection, severe inflammation, and histopathology. Effective control of viral infection in HNFL mice associated with significant macrophage infiltration, and the induction of a potent macrophage-mediated interferon response. The pronounced upregulation of the USP18-ISG15 axis (a negative regulator of IFN responses), by macrophages was unique to HNFL mice and represented a prominent correlate of reduced inflammation and histopathology. Altogether, our work shed light on unique cellular and molecular correlates of lung tissue protection during SARS-CoV-2 infection, and underscores macrophage IFN responses as prime targets for developing immunotherapies against coronavirus respiratory diseases.


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave , Virosis , COVID-19 , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA